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Remote-sensing data acquired by satellite have a wide scope for agricultural

applications owing to their synoptic and repetitive coverage. On the one hand,

spectral indices deduced from visible and near-infrared remote-sensing data have

been extensively used for crop characterization, biomass estimation, and crop

yield monitoring and forecasting. On the other hand, extensive research has been

conducted using agrometerological models to estimate soil moisture to produce

indicators of plant-water stress. This paper reports the development of an

operational spectro-agrometeorological yield model for maize using a spectral

index, the Normalized Difference Vegetation Index (NDVI) derived from SPOT-

VEGETATION, meteorological data obtained from the European Centre for

Medium-Range Weather Forecast (ECMWF) model, and crop-water status

indicators estimated by the Crop-Specific Water Balance model (CSWB). Official

figures produced by the Government of Kenya (GoK) on crop yield, area

planted, and production were used in the model. The statistical multiple

regression linear model has been developed for six large maize-growing provinces

in Kenya. The spectro-agrometerological yield model was validated by

comparing the predicted province-level yields with those estimated by GoK.

The performance of the NDVI and land cover weighted NDVI (CNDVI) on the

yield model was tested. Using CNDVI instead of NDVI in the model reduces

26% of the unknown variance. Of the output indicators of the CSWB model, the

actual evapotranspiration (ETA) performs best. CNDVI and ETA in the model

explain 83% of the maize crop yield variance with a root square mean error

(RMSE) of 0.3298 t ha21. Very encouraging results were obtained when the Jack-

knife re-sampling technique was applied, thus proving the validity of the forecast

capability of the model (r250.81 and RMSE50.359 t ha21). The optimal

prediction capability of the independent variables is 20 days and 30 days for

the short and long maize crop cycles, respectively. The national maize production

during the first crop season for the years 1998–2003 was estimated with an

RMSE of 185 060 t and coefficient of variation of 9%.

1. Introduction

Crop-weather models had long been used for crop monitoring and yield forecasting

before the advent of remote-sensing products, like the Normalized Difference
Vegetation Index (NDVI). More than 50 years have passed since the first paper on

mathematical modelling of photosynthesis and productivity in plant communities

was published in Japan (Monsi and Saeki 1953), and these kinds of studies were later

continued by research groups formed in the Netherlands (de Wit et al. 1970, de Wit
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and Goudriaan 1974). In the USA, Loomis (1970), McCree (1970), and Curry (1971)

published outstanding papers along the same lines. Interesting research was

undertaken in Poland by using statistical empirical models (Górski et al. 1994).

In 1975, during the major world food crisis produced by climatic events, including the

Sahelian droughts of 1972 and 1973, FAO established the Global Information and

Early Warning System for Food and Agriculture (GIEWS). The absence of low-cost

methods applicable to large regions motivated the FAO to use the Crop Specific Water

Balance (CSWB) model (Frère and Popov 1979, Gommes 1993) as a tool for monitoring

and yield forecasting in African countries. In those countries, the insufficient

information on weather and crops precluded applying more complex models.

In Europe, the crop-weather model, WOFOST, was adapted for monitoring and

yield forecasting in European countries; the model represents the engine of the Crop

Growth Monitoring System established in 1998 by the Monitoring Agriculture with

Remote Sensing (MARS) project at the Joint Research Centre (JRC) (Meyer-Roux and

Vossen 1994). WOFOST is a member of the family of models developed in Wageningen

by the C.T. de Wit school (de Wit et al. 1970, de Wit and Goudriaan 1974).

The introduction of remote sensing and the derived vegetation indices in the early

1980s was considered a potential tool to improve simulations by objective

observations in real time. NDVI has been used as an indicator of the vigour of

vegetative activity as represented by indirectly observable chlorophyll activity

(Hastings and Emery 1992). Low values of NDVI have been associated with the lack

of vegetation, dormant states of existing vegetation or stress caused by drought,

over-irrigation, or diseases (Hastings 2005). Remote-sensing products alone have

been used in different parts of the world to estimate crop yield (Hochheim and

Barber 1998, Lewis et al. 1998, Wang et al. 2005).

Potdar et al. (1999) observed for some cereal crops grown in rain-fed conditions

that rainfall distribution parameters in space and time need to be incorporated into

crop yield models in addition to vegetation indices deduced from remote-sensing

data. Such hybrid models show a higher correlation and predictive capability than

the simple models (Manjunath and Potdar 2002). The agro-meteorological models

introduce information about solar radiation, temperature, air humidity, and soil

water availability, while the spectral component introduces information about crop

management, varieties, and stresses not taken into consideration by the agro-

meteorological models (Rudorff and Batista 1990). The purpose of this research is to

improve the spatial estimation of yield by combining crop-weather models and

satellite observations.

Using Kenya as an Eastern Africa case study, this paper presents the

methodological approach employed to build and validate a maize yield model

using remote-sensing data from SPOT VEGETATION and the outputs of the FAO-

CSWB model. Kenya was chosen as a trial study area for developing the model

because Kenya is relatively rich in data, and agriculture is practised in coastal,

lowland, and highland areas which have diverse climates and are representative of

most regions in Eastern Africa. Maize is a major food crop cultivated in Kenya. It

represents 90% of national cereal production. Between 1998 and 2003, the average

area cultivated with maize was 1 574 370 ha, with a total national production of

above 2 475 947 t and a national average yield of 1.57 t ha21. Maize is mainly

cultivated in the south-western part of the country, in the provinces of Rift Valley,

Nyanza, and Western. The three provinces together produce more than 80% of the

national maize production. Nyanza, Western, and Rift Valley provinces have a

3776 O. Rojas
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mono-modal rainfall distribution, while Central, Eastern, and Coast provinces

exhibit on average a bi-modal distribution of rainfall with the possibility of having

two crop seasons each year. The first crop season historically extends from February

to August, producing more than 82% of the national maize production, while the

second crop season, from September to January, represents 18%.

2. Materials and methods

2.1 Real-time input data

2.2.1 Meteorological data. The rainfall and potential evapotranspiration (PET)

data used in this study are products of the European Centre for Medium-Range

Weather Forecast (ECMWF model) at Reading in the UK. The data were

interpolated from the original 1u grid to a final resolution of 0.5u (approximately

55 km). Dekadal rainfall and ETP were then spatially averaged for each area in the

maize crop mask using ArcMap GIS tools.

2.2.2 Remote-sensing data. The products of SPOT VEGETATION acquired by

MARS are 10-day NDVI synthesis (S10) images, obtained by Maximum Value

Compositing (MVC). The images are corrected for radiometry, geometry, and

atmospheric effects. The 10-day images are delivered to the JRC with a delay of

around 2–3 days.

2.2 CSWB model

The FAO CSWB is a very simple but physically sound soil-water balance model

which is used to assess the impact of weather conditions on crops (Frère and Popov

1979, Gommes 1993, Rojas et al. 2005). The water balance of the specific crop is

calculated in time increments, usually 10 days. The equation of the water balance is:

Wt~Wt{1zR{ETA{ rzið Þ ð1Þ

where: Wt is the amount of water stored in the soil at the time t; Wt–1 is the amount

of water stored in the soil at the end of the previous period (t–1); R is the cumulated

rainfall during the dekad or t-period of time; ETA is the actual evapotranspiration

in the t-period time; r represents the water losses due to runoff in the t-period time;

and i represents the water losses due to deep percolation in the t-period time

Two main outputs of the CSWB model are demonstrated to be positively

correlated with the crop yield: the ETA and the Water Satisfaction Index (WSI).

ETA has the advantage of including the radiation, which is an important climatic

variable susceptible to influencing the crop yield in the region. The influence of

factors other than water stress which can reduce crop yields such as water logging,

mechanical damage produced by strong winds, or biological factors, such as locusts,

birds, insects, or plant diseases is not considered in the CSWB model. The WSI is an

index of the CSWB model to assess the amount of water received by the crop during

any time of the season. Normally, the WSI is used for defining qualitative yield

classes (i.e. good, average, and poor) or in relative figures (per cent of an optimal

yield crop). When the WSI is equal to 100, it indicates no water stress and good crop

yields, while a WSI of 50 corresponds to poor crop yield or crop failures. The

estimation of the actual evapotranspiration (ETA) was done using Agromet-Shell

(Hoefsloot 2005). AgrometShell is software that integrates the main tools used in the

Early Warning System such as SUIVI (agrometeorological database), FAOINDEX

Operational maize yield model development and validation 3777
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(crop-specific water balance), and the most common tools of data interpolation.

Agromet-Shell was designed for storing agrometeorological information on

meteorological stations base. In the present study, the information from the crop

mask units (spatially averaged of the polygon) was inserted in lieu of meteorological

stations with the objective of running the water-balance model. AgrometShell has

been developed by the Agrometeorological Group at the FAO and programmed by

Peter Hoelsloot. The crop information needed to run the water-balance model

(water-holding capacity and cycle length) was taken from the crop production

system zones database (CPSZ) (Van Velthuizen et al. 1995).

2.3 Planting-date estimation model

To start the simulation, the CSWB model requires the current planting date for each

crop season. The criterion followed to define the planting dekad was the first dekad

with at least 20 mm of rainfall followed by two dekads with at least 20 mm of total

rain. The same planting date was used to start accumulating NDVI values up to the

end of the crop cycle (table 1).

2.4 Crop statistics

The Kenyan government started collecting disaggregated agricultural statistics by

crop season in 1997. However, since the SPOT VEGETATION sensor was launched

on board the SPOT 4 satellite later, in 1998, crop data were analysed between 1998

and 2003. The statistics are collected at district level and aggregated by province.

MARS-FOOD received Kenyan statistics of area planted, yield, and production

aggregated at the national level for maize and sorghum for 1985–2003, and

disaggregated by crop season (‘Long rains’ and ‘Short rains’) at district level for

1997–2003 from Nancy Mutunga, FEWS-NET Country Representative of Kenya.

2.5 Maize crop mask

In this study, two levels of maize crop mask were defined. The first level, the ‘general’

maize crop mask was created using only statistical information; the second level is the

result of intersecting the first level of crop mask with the Africover land-cover

information (Di Gregorio and Jansen 2000). The first level of crop mask was used for

area-averaging of the meteorological and NDVI information. The second level was

used for extracting the land-cover-weighted NDVI (CNDVI) (see section 2.7). To

define the first level of crop mask, the statistical information about the area planted

with maize at the district level was used. For each district, we calculated the percentage

Table 1. Maize crop-cycle length and phenological phases in dekads*.

Province
Crop cycle
(dekads)

Initial
(dekads)

Vegetative
(dekads)

Flowering
(dekads)

Ripening
(dekads)

Central 16 3 3 7 3
Coast 11 2 2 5 2
Eastern 9 2 2 3 2
Nyanza 13 3 2 5 3
Rift Valley 16 3 3 7 3
Western 16 3 3 7 3

*10-day period.

3778 O. Rojas
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of the total provincial area planted with maize. The districts with no maize planted and

those with less than 6% of the area planted with maize were masked out from each

province. As a result, a general maize crop mask was used, constituting all the districts

with more than 6% of area planted with maize for each province. The final resolution

of this crop mask is at the province level. To obtain a more precise maize crop mask,

we used two classes from the Africover land cover database: the isolated small fields

and continuous small fields that were considered to better represent the traditional

maize farms of Kenya. The first maize crop mask at the province level was intersected

by AFRICOVER classes. The result is a better delimitation of the areas cultivated with

maize in each province. Unfortunately, the polygons resulting are too small to be used

for extracting meteorological information at 0.5u resolution.

2.6 NDVI

The NDVI has been the most frequently used vegetation index within agrometeor-

ological analysis. It is defined as:

NDVI~ NIR{REDð Þ= NIRzREDð Þ ð2Þ

NIR and RED are, respectively, the reflectance (%) in the near-infrared and in the

red channels. It is easy to understand the index when the characteristics of

absorption and reflection of the radiation by green leaves are studied. The

chlorophyll of the plant absorbs the majority of the radiation in the visible part of

the spectrum, principally the red portion (0.6–07 mm), and is highly reflective in the

near-infrared. Thanks to this property of green vegetation, NDVI is a direct

indicator of the plant’s photosynthetic activity. Therefore, parameters such as water

stress can be monitored successfully by analysing the NDVI values. The NDVI

values were spatially averaged for each area in the maize crop mask. Three variables

were created when aggregating the NDVI values on a temporal scale: cumulative

NDVI values starting from planting date up to the end of the length of the crop

cycle (NDVIc), maximum NDVI during the crop cycle (NDVIx) and three-dekad

averages around the maximum NDVI (NDVIa) to smooth the curve when an

isolated peak represents the maximum.

2.7 CNDVI methodology

Despite the fact that it is not possible to eliminate all spectral responses from non-

agricultural vegetation in the African parcels, any improvement of the crop mask

will reduce the influence of natural vegetation and show a higher correlation for

remote-sensing indices with crop yield. Therefore, it was decided to include the land-

cover-weighted NDVI method (CNDVI; CNDVI: ‘C’ for land-cover information

that, in the case of Europe, represents CORINE land cover, in Africa mainly

AFRICOVER land cover) using Africover land cover (Di Gregorio and Jansen

2000). The CNDVI method has been developed to extract NDVI profiles from low-

resolution satellite imagery. It is currently in use for agricultural monitoring in

Europe, with two main objectives: (1) to aggregate NDVI information by

administrative regions in order to give synthetic and manageable information; (2)

to focus on agricultural land only, owing to the integration of land-cover

information. The CNDVI method has been fully documented by Genovese et al.

(2001). The method was originally designed and tested for NOAA-AVHRR (with a

4.4 km resolution) and Co-ordination of Information on the Environment

Operational maize yield model development and validation 3779
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(CORINE) land-cover data (Perdigao and Annoni 1997), but can theoretically be

applied to all combinations of low-resolution images and higher-resolution land-

cover data. Negre et al. (2001) have adopted the methodology to work in Africa

using SPOT-VEGETATION instead of NOAA-AVHRR and AFRICOVER land-

cover classes (Di Gregorio and Jansen 2000) instead of CORINE land cover. For the

CNDVI extraction itself, the regrouped agricultural classes are re-scaled to the same

resolution as the VGT images (1 km), creating so-called abundance images. In these

images, the value of each 1-km pixel expresses the percentage which is covered by an

Africover class. The NDVI of each 10-day image pixel is weighted following the

abundance image, and the final NDVI profiles are class-specific. Aggregation is

done at a regional level to obtain a single CNDVI value per region, through a

weighted average of NDVI values. The agricultural AFRICOVER classes are not

crop-specific but provide information about field size and field distribution. In this

study, two classes were selected: the isolated small fields and continuous small fields

that were considered to better represent the traditional maize farms of Kenya.

AFRICOVER classes were used to refine the crop mask by province, by selecting

specific agricultural areas, supposed to be maize areas within each district. As for the

NDVI, three variables were created aggregating the CNDVI values on a temporal

scale: using cumulative CNDVI values starting from planting date up to the end of

the crop cycle (CNDVIc), maximum CNDVI during the crop cycle (CNDVIx) and

three-dekad averages around the maximum CNDVI (CNDVIa) to smooth the curve

when an isolated peak represents the maximum.

2.8 Crop-yield-model development and validation

A multiple linear regression analysis was used in the development of the crop yield

model testing the following independent variables: WSI, cumulated ETA during the

whole maize cycle, ETA cumulated by phenological phase (initial, vegetative,

flowering, and ripening), cumulated soil-water deficit and surplus, NDVIc, NDVIx,

NDVIa, CNDVIc, CNDVIx, CNDVIa, and total cumulated rainfall during the crop

cycle. To increase the number of observations and hence the net degree of freedom,

the model was developed, considering all the observations from all regions together.

The Jack-knife re-sampling technique (leaving one data value out each time) was

applied to test the forecast capability of the model. To avoid any strong influence of

climatic conditions given by a specific year, each time it excluded a set of

observations belonging to the same year. To assess the prediction capacity of the

model, a correlation matrix with the independent variables accumulated during the

phenological phase of maize was tested. To study the evolution of the r2 and RMSE,

four multiple linear regression models were built at the provincial level whereby each

model represents a phenological phase of maize (initial, vegetative, flowering, and

ripening) using the most correlated variables. The Jack-knife technique was applied

to each model to validate its forecasting capability.

The methodology flow chart describing briefly the steps involved in digital data

analysis, the agrometeorological model outputs, and the development of the spectro-

agrometeorological yield model is given in figure 1.

2.9 Estimation of national maize production during the first crop season

Although our main scope was the development of a crop-yield forecasting model,

due to the fact that the area planted with maize has a strong time trend in Kenya, it

3780 O. Rojas
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is possible to obtain an estimate of the national maize production during the first

crop season. The maize crop yield was estimated by province using the spectro-

agrometeorological yield model. To obtain the national maize yield average, the

provincial yields obtained by the spectro-agrometeorological model were weighted

by the percentage of contribution of each province to the total national area planted

with maize. The national area planted with maize was estimated using the time-trend

equation. Between 1998 and 2003, the area planted with maize during the first crop

season represented more than 71% of the national area planted with maize. A

correction factor from the statistics of 71% was applied to estimate the area planted

during the first crop season. The weighted national yield was multiplied by the

Figure 1. Methodology flow chart describing input data, process, and tools for the
development of the spectro-agrometerological yield model.

Operational maize yield model development and validation 3781
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estimated area planted during the first crop season with maize to obtain the national

production figures for the first crop season. Finally, a comparison was made

between the estimated production and the observed national production figures for

Kenya.

3. Results

3.1 Maize crop masks

Figure 2(a) shows the districts in each province that represent more than 6% of the

area planted with maize. Districts with less than 6% have been masked out. This

crop mask was used to extract the NDVI and the meteorological values needed to

run the CSWB model. Figure 2(b) shows the two classes of Africover land cover

considered in this study: isolated small fields and continuous small fields. The

Africover classes outside the general crop mask were not considered during the

extraction of the CNDVI values.

3.2 Trend analysis

The trend in rainfall, area planted, yield, and production of maize during the first

crop season was studied. The results of the analysis carried out at the province level

Figure 2. (a) Maize crop mask based on the percentage of area planted with maize at district
level (districts with less than 6% of area planted with maize have been masked out). (b) In
black, the isolated small fields and continuous small fields from the Africover database;
in grey, the maize crop mask done based on the percentage of area planted with maize at
the district level. The Africover classes outside the general maize crop mask have been
masked out.

3782 O. Rojas
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are presented in table 2. The maize yield exhibits a negative trend in Coast, Nyanza,

and Western provinces; the data were not de-trended due to the fact that this

tendency can be explained by the trend in rainfall. Considering the objective of the

study, we de-trend when the tendency is explained by variables other than climate,

such as technological improvements. Nyanza and Rift Valley have a very positive

trend in area planted during the ‘Long rains’ crop season. Due to the fact that 6

years is a short period of time for a conclusive trend analysis, we used the longest

series of national aggregated data of Kenya (1985–2003) and analysed the

production, area planted, and yield of maize at the national level. The statistics

shown in figure 3(a) show that maize production has no trend. The average

production is above 2.5 million tonnes, with a minimum production of 1.7 million

tonnes, which occurred in 1993 followed by a maximum production of 3.0 million

tonnes in 1994. Figure 3(b) shows that the area planted has a strong positive trend,

while maize yield has a negative trend. Kenya has increased the area planted to

compensate for decreased productivity and the growing demand for maize. The

results of our trend analyses undertaken during the first crop season suggest that the

increase in area planted has been concentrated mainly in the Nyanza and Rift Valley

provinces, and less extensively in the Coast province. Eastern is the only province

that shows a negative trend in area planted during 1998–2003 (table 2). Figure 4

shows the trend in annual rainfall (1989–2005), first crop season (1989–2005), and

maize yield aggregated at the national level (1985–2003). The trends of all three

figures are negative. The trend in annual rainfall shows a small coefficient of

determination (r250.13) when compared with the coefficient of the first crop season

(r250.34). The accumulated rainfall in the second crop season (between 1989–2005)

has neither a negative nor positive trend, signifying that the decrease in maize yields

is due to reduced water availability during the first crop season in Kenya.

3.3 NDVI and CNDVI

Figure 5 shows the difference between the spatially averaged NDVI and CNDVI for

the different provinces and years. The differences are smaller in the Coast and

Eastern province, suggesting little impact on the model. Meanwhile, the rest of the

provinces show large differences. Negative differences could be explained by the

addition of dry areas with low NDVI values in the general maize crop mask;

meanwhile, positive differences indicate that the general crop mask includes very

dense natural vegetation with high NVDI values within the agricultural areas. We

conclude that there is a difference between NDVI and CNDVI that spans from 0.01

to 1.08 when the variables are accumulated for the whole crop cycle. To assess the

Table 2. Trend analysis in rainfall, area planted and yield (1998–2003) and rainfall
(1989–2005) by provinces during the first crop season in Kenya.

Province

1998–2003 1989–2005

Rainfall r2 Area planted r2 yield r2 Rainfall r2

Central No trend – No trend – No trend – No trend –
Coast Negative 0.56 Positive 0.30 Negative 0.87 No trend –
Eastern No trend – Negative 0.23 No trend – No trend –
Nyanza Negative 0.61 Positive 0.84 Negative 0.52 Negative 0.49
Rift Valley No trend – Positive 0.79 No trend – Negative 0.20
Western Negative 0.58 No trend – Negative 0.52 Negative 0.37

Operational maize yield model development and validation 3783
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impact of such differences on the statistics of the model, we calculated the reduction
in per cent of the unknown variance using 1 – r2 (r from table 3). The unknown

variance is reduced by 26% when CNDVI is used in the model instead of NDVI. We

Figure 3. (a) Maize production for the period 1985–2003. (b) Area planted and yield for
maize during the period 1985–2003. Data from Government of Kenya.

3784 O. Rojas
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Figure 4. Negative trend in annual rainfall (1989–2005) and in the cumulated rainfall
(February–August), first crop season, compared with the negative trend of the national maize
yield.

Figure 5. Difference between the spatially averaged cumulated NDVI from the planting
dekad to end of the crop cycle (NDVIc) and cumulated CNDVI for the same period
(CNDVIc) by province.
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conclude that the CNDVI gives a better spectral signal of maize crop areas than

NDVI spatially averaged by the general crop mask.

3.4 Correlation matrix

Table 3 presents the correlation matrix of maize yield and the independent variables.

There are three groups of independent variables: variables derived from remote

sensing, climatic variables derived from the ECMWF model, and variables derived

from the CSWB model. The CNDVIc shows the highest value of correlation

coefficients among remote-sensing variables (r50.87). The average of three dekads

around the maximum NDVI does not give a better correlation than the maximum

itself, which means that smoothing the peaks of the NDVI curve does not improve

the correlation with yield. Rainfall accumulated from the planting date to the end of

the crop cycle gives a correlation coefficient of 0.52, which is higher than some of the

indicators produced by the CSWB model such as the WSI and accumulated water

excess (WEXt) and deficits (WDEFt). Among the CSWB model variables, the ETA

shows a high correlation coefficient (r50.73). It is interesting to highlight that the

results of ETA by phenological phases show a good correlation during the initial,

flowering, and ripening phases and low correlation during the vegetative phase.

These results are in agreement with international research on the impact of water

stress on crop yield during different phenological phases (Doorenbos and Pruitt

1977). Finally, we selected the two most correlated variables, ETA (total) and

CNDVIc, to create the multiple-linear-regression model.

3.5 Spectro-agrometerological model

Figure 6 shows a comparison between the estimated maize yields from the model

and the observed yields. Table 4 lists the multiple regression coefficients of the

intercept and independent variables, the t-Stat and the confidence interval for the

coefficients at a 95% probability of occurrence. The adjusted r2 is 0.83. The root

mean square error (RMSE) of the model is 0.3298 t ha21, and the coefficient of

variation is 21%. The RMSE examines the size of our forecast error. This measure

assumes that larger forecast errors are of greater importance than smaller errors, so

they are given a more-than-proportionate penalty. The RMSE is defined as:

1

T

XT

t~1

Ft{Atð Þ2
 !1=2

where: T is the number of observations; Ft is the forecast of the component; and At

is the actual outturn. The coefficient of variation (CV) is a measure of relative

dispersion and is calculated as the standard deviation divided by the mean. It is

generally expressed as a percentage. In this study, it was calculated using the

standard deviation of the residual divided by the mean of the observed variable.

The following equation of the spectro-agrometeorological model was found:

Yield~{1:4429z0:2498
Xt~EOCC

i~PD
CNDVI tð Þz0:0030

Xt~EOCC

i~PD
ETA tð Þ ð3Þ

The adjusted r250.83, and n536, where t is the dekad number; EOCC is the end of

the maize crop cycle; PD is the planting dekad; Yield is the maize crop yield

expressed in tonnes per hectare; CNDVI is the weighted NDVI using Africover land

cover by dekad; and ETA is the actual evapotranspiration in millimetres per dekad
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Table 3 Correlation Matrix of maize yield and the independent variables

WSI WEXt WDEFt ETAi ETAv ETAf ETAr ETAt Rain CNDVIc CNDVIx CNDVIa NDVIc NDVIx NDVIa Yield

WSI 1
WEXt 0.130 1
WDEFt 0.921 0.283 1
ETAi 0.298 20.278 0.164 1
ETAv 20.402 20.142 20.382 0.107 1
ETAf 0.852 0.265 0.795 0.309 20.285 1
ETAr 0.818 0.339 0.812 0.328 20.278 0.764 1
ETAt 0.860 0.275 0.811 0.386 20.175 0.976 0.858 1
Rain 0.381 0.947 0.494 20.135 20.215 0.502 0.551 0.517 1
CNDVIc 0.237 0.290 0.122 0.585 0.144 0.517 0.408 0.560 0.405 1
CNDVIx 0.395 0.320 0.361 0.613 0.148 0.433 0.505 0.523 0.423 0.700 1
CNDVIa 0.383 0.268 0.338 0.610 0.081 0.381 0.463 0.462 0.358 0.675 0.954 1
NDVIc 0.176 0.312 0.060 0.582 0.125 0.437 0.340 0.477 0.403 0.979 0.700 0.670 1
NDVIx 0.186 0.253 0.161 0.560 0.092 0.170 0.278 0.244 0.288 0.582 0.901 0.868 0.656 1
NDVIa 0.216 0.205 0.190 0.540 20.011 0.141 0.248 0.200 0.238 0.512 0.825 0.829 0.602 0.960 1
Yield 0.511 0.350 0.463 0.574 0.057 0.663 0.649 0.731 0.525 0.869 0.782 0.771 0.818 0.594 0.525 1
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3.6 Jack-knife re-sampling technique

To validate the forecast capability of the model, the Jack-knife re-sampling

technique was used. The impact of the difference on climatic conditions of each

province was reduced, each time omitting a set of observations belonging to the

same year. Figure 7 shows the comparison between the maize yields’ estimates from

the model using the Jack-knife re-sampling technique and the observed yields. The

r2 is 0.81, the RMSE of the model is 0.359 t ha21, and the coefficient of variation is

23%. Our results are encouraging when compared with those reported by Lewis

et al. (1998). They used a simple regression model with an NDVI from NOAA-

AVHRR for estimating maize production in Kenya, and they obtained a

Jack-knife r2 of 0.56.

3.7 Prediction capability of the independent variables

To study the prediction capability of the independent variables, the correlation

coefficient of CNDVI and ETA with maize yield was calculated. Figure 8(a) shows

Table 4. Multiple regression coefficients, standard error, t-Stat, P-value, and 95% confidence
interval.

Coefficients
Standard

error t Stat P-value
Lower
95%

Upper
95%

Intercept 21.4429 0.2324 26.2094 0.00000052164 21.9157 20.9701
ETAt 0.0030 0.0007 4.2611 0.00015945560 0.0016 0.0044
NDVIc 0.2498 0.0312 8.0022 0.00000000312 0.1863 0.3134

Figure 6. Comparison between the maize yield estimated by the spectro-agrometerological
model and the observed yields for the different provinces.
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the evolution of the correlation coefficient accumulated during the whole cycle and

accumulated by phenological phases. CNDVI has a very strong correlation during

the whole cycle. ETA shows a low correlation only during the vegetative phase. The

high correlation found in both variables requires further study. During the initial

phase, CNDVI has a higher correlation than ETA, which can be explained by the

fact that CNDVI integrates information about the pre-planting condition (‘long

memory’) and is therefore better than simulations with the CSWB model. Also, the

spectral signal contains information on the characteristics of different soils that is

difficult to introduce into the CSWB model. During the vegetative phase, the

correlation of both variables by phenological phase decreases, thus confirming the

well-known low sensibility of yield when there is some stress during this phase

(Doorenbos and Pruitt 1977). The flowering phase shows a high correlation

followed by the ripening phase. The decision was made to build a multiple-

regression model using the CNDVI and ETA accumulated from the initial to

Figure 7. Comparison between maize yield estimated by the model using the Jack-knife re-
sampling technique and observed yield. RMSE50.359 t ha21; coefficient of determination:
0.81; coefficient of variation: 23%.

Operational maize yield model development and validation 3789
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Figure 8. (a) Variation in correlation coefficient (r) with the independent variables
cumulated during the whole cycle and cumulated by phenological phases. (b) Variation of
adjusted r2 and root mean square error in (t ha21) for the spectral-agrometeorological model
using the cumulated CNDVI and ETA when applying the Jack-knife re-sampling technique.
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ripening phases (i.e. by phenological phases). The Jack-knife re-sampling technique

was used to avoid any strong influence of climatic conditions for a specific year.

Figure 8(b) shows the evolution of the adjusted r2 and RMSE after the Jack-knife

technique had been applied. Even if the correlation during the initial phase is high in

both variables, the adjusted r2 for this phase is 0.59. The variables for the early crop

stage explain 59% of the variability of maize yields. Since the adjusted r2 is very high at

the beginning of the crop season, it should be tested once a longer time series is

available to see if r2 remains high. Using the model at this early stage introduces a high

degree of uncertainty. Uncertainty decreases during the flowering period in which the

adjusted r2 increases to 0.74 with an RMSE of 0.42 t ha21. We suggest using the

variables CNDVI and ETA accumulated from planting to the end of flowering as a

preliminary forecast and refining it when the crop cycle reaches the end. The CNDVI

and ETA accumulated for the whole crop cycle explain 81% of the maize yield variance

with an RMSE of 0.36 t ha21 when the Jack-knife technique is applied.

3.8 Estimation of national production during the first crop season

Although our main scope was the development of a crop-yield-forecasting model,

due to the fact that the area planted with maize has a strong time trend in Kenya, it

is possible to obtain an estimate of the national maize production during the first

crop season. We estimated the total area planted using the equation of time trend

(figure 3(b)). Using the spectro-agrometeorological model, the maize yield was

estimated at the province level. Figure 9 shows a comparison of the observed

production with the estimated production for the years 1998–2003. The RMSE is

185 096 t, with a coefficient of variation of 9%.

4. Conclusions and recommendations

It has been shown that it is possible to conduct operational maize yield forecasts

using CNDVI derived from SPOT VEGETATION and ETA from the FAO CSWB

model. CNDVI was shown to improve the spectral signal of the maize crop areas

when compared with the simple spatially averaged NDVI using the general crop

mask. CNDVI proved to be a simple and valid method for NDVI extraction with

low-resolution satellite images and highly fragmented high-resolution land-cover

classes. However, significant improvements in extracting pure agricultural time

profiles were primarily due to spatial refinements of the crop masks. The model

showed a suitable prediction capability of 20 and 30 days before harvest for the

short and long maize crop cycles, respectively. Thanks to this prediction capacity, it

is possible to obtain an early forecast using the CNDVI and ETA accumulated from

planting dekad to the end of the flowering phenological phase. A more accurate

estimate will be possible when the maize crop cycle reaches the end, using the

CNDVI and ETA accumulated for the whole length of the maize crop cycle. Even

the second forecast using the variables accumulated up to the end of the crop cycle

enables reliable predictions 3 to 4 months earlier than the official estimates provided

by national authorities and based on traditional field-sampling surveys. As the time

series of the yield data was limited, some reservations for the model must be made,

until a longer series of yield data is available. The simplicity of the proposed

regression yield model should allow operational implementation in developing

countries. Based on these encouraging results, regression models could be developed

by MARS-FOOD for other geographical areas in Eastern Africa.

Operational maize yield model development and validation 3791



D
ow

nl
oa

de
d 

B
y:

 [E
ur

op
ea

n 
C

om
m

is
si

on
] A

t: 
14

:2
4 

23
 A

ug
us

t 2
00

7 

Acknowledgements

The author would like to thank Dr Javier Gallegos for the useful suggestions and

ideas on the statistical treatment of the data. I sincerely appreciated the

collaboration with all colleagues of MARS-FOOD. With respect to this study, I

acknowledge Dr Felix Rembold, Dr Catalin Lazar, Dr Linda Stephen, Dr Steffen

Fritz, and Dr Cherith Aspinall for the revision to the text and useful comments. The

crop statistics of Kenya was kindly provided by Dr Nancy Mutunga, FEWS-NET

Country Representative of Kenya.

References
CURRY, R.B., 1971, Dynamic simulation of plant growth. I. Development of model.

Transactions of the ASAE, 14, pp. 946–949.

DE WIT, C.T., BROUWER, R. and PENNING DE VRIES, F.W.T., 1970, The simulation of

photosynthetic systems. In Prediction and measurement of photosynthetic
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FRÈRE, M. and POPOV, G., 1979, Agrometeorological Crop Monitoring and Forecasting. FAO

Plant Production and Protection, Paper No. 17 (Rome: FAO).

GENOVESE, G., VIGNOLLES, C., NEGRE, T. and PASSERA, G., 2001, A methodology for a

combined use of Normalized Difference Vegetation Index and CORINE land cover

data for crop yield monitoring and forecasting. A case study on Spain. Agronomie, 21,

pp. 91–111.

GOMMES, R., 1993, FAOINDEX, Version 2.1. Agrometeorology Group (Rome: FAO).

Figure 9. Comparison of the observed national maize production and the estimated maize
production during the first crop season.

3792 O. Rojas



D
ow

nl
oa

de
d 

B
y:

 [E
ur

op
ea

n 
C

om
m

is
si

on
] A

t: 
14

:2
4 

23
 A

ug
us

t 2
00

7 
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